z^2+(3)=(8)^2

Simple and best practice solution for z^2+(3)=(8)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2+(3)=(8)^2 equation:



z^2+(3)=(8)^2
We move all terms to the left:
z^2+(3)-((8)^2)=0
determiningTheFunctionDomain z^2+3-8^2=0
We add all the numbers together, and all the variables
z^2-61=0
a = 1; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·1·(-61)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{61}}{2*1}=\frac{0-2\sqrt{61}}{2} =-\frac{2\sqrt{61}}{2} =-\sqrt{61} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{61}}{2*1}=\frac{0+2\sqrt{61}}{2} =\frac{2\sqrt{61}}{2} =\sqrt{61} $

See similar equations:

| 8=2x+36 | | (-1.5)^2+z=22 | | -14+3x-2x=32-1x-16 | | 8x-15=2x-27-3x | | 2=13-4x | | (-4.3)^2+z=11 | | 160x+3=195x-2 | | -8-3(w+3)=4(w+11)-7w | | 4=2/3x-1 | | 8=2x-2+8x | | 7y+2=5y+7=57 | | x+(x+30)+(x-31)=110 | | W+2w+8+w+2+8=88 | | √7f-33+3=f | | 2q2+3q+1=0 | | 30-12x=6(-x-3) | | 4=2/3x+1 | | 2a+9=-5a+30 | | 18.4+12y=68.8 | | (3x+18)+(9x+27)=99 | | 4​(x-​5)=​(x+​5) | | 2k/15=3 | | 6x+8=-3(2x-7) | | x-17=-76 | | Y-12=X2-7x | | X*4-2x*2-3=0 | | -41+12x=7+49 | | 3y+3=39 | | Y-12=x^2-7x | | c+42+c-5=180 | | 11-2q=53 | | 5x+5+x=5 |

Equations solver categories